Understanding the toxicity of phenols: using quantitative structure-activity relationship and enthalpy changes to discriminate between possible mechanisms.

نویسندگان

  • Hooman Shadnia
  • James S Wright
چکیده

Experimental studies of the "extended toxicity" of substituted phenols are mainly of two types: the toxicity due to phenoxyl radical formation and the toxicity caused by metabolites, for example, the formation of quinones. Quantitative structure-activity relationship (QSAR) studies of phenol toxicity have dealt with the formation of phenoxyl radicals using bond dissociation enthalpy (BDE) of parent phenols, have obtained good correlations with experimental data, and have concluded that phenoxyl radicals are the toxic agent. However, the actual toxic mechanism has remained poorly defined. In this study, we follow the metabolic pathways of monosubstituted phenols to their quinone end products and calculate enthalpy changes for all relevant reactions. These enthalpy changes are first used as descriptors for a QSAR analysis. Many of these new descriptors, including some relevant to quinone formation, are highly correlated with the BDE values of the parent phenols. Therefore, a QSAR analysis by itself is inconclusive as to the mechanism of toxicity. To better define the problem, we have returned to a detailed analysis of net enthalpy changes. We show that the formation of phenoxyl radical is the rate-determining step: This step is slow for electron-withdrawing group substituted phenols (EWG-phenols), whereas it is fast for electron-donating group substituted phenols (EDG-phenols). The study of net enthalpy changes of reactions reveals that once the phenoxyl radical is present, the corresponding quinone is rapidly formed, so that quinone formation may be ultimately responsible for toxicity of EDG-phenols. We then demonstrate how the suggested mechanism (quinone formation) is successful in predicting the toxicity of some complex phenols, which are predicted poorly using the phenoxyl radical argument. We also discuss the toxicities of some estrogens in light of the quinone mechanism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitative Structure-Activity Relationship Studies of 4-Imidazolyl- 1,4-dihydropyridines as Calcium Channel Blockers

Objective(s): The structure- activity relationship of a series of 36 molecules, showing L-type calcium channel blocking was studied using a QSAR (quantitative structure–activity relationship) method. Materials and Methods: Structures were optimized by the semi-empirical AM1 quantum-chemical method which was also used to find structure-calcium channel blocking activity trends. Several types of ...

متن کامل

Prediction of toxicity of aliphatic carboxylic acids using adaptive neuro-fuzzy inference system

Toxicity of 38 aliphatic carboxylic acids was studied using non-linear quantitative structure-toxicityrelationship (QSTR) models. The adaptive neuro-fuzzy inference system (ANFIS) was used to construct thenonlinear QSTR models in all stages of study. Two ANFIS models were developed based upon differentsubsets of descriptors. The first one used log ow K and LUMO E as inputs and had good predicti...

متن کامل

Three-dimensional quantitative structure activity relationship approach series of 3-Bromo-4-(1-H-3-Indolyl)-2, 5-Dihydro-1H-2, 5- Pyrroledione as antibacterial agents

The use of quantitative structure–activity relationships, since its advent, has becomeincreasingly helpful in understanding many aspects of biochemical interactions in drug research.This approach was utilized to explain the relationship of structure with biological activity ofantibacterial. For the development of new fungicides against, the quantitative structural–activityrelationship (QSAR) an...

متن کامل

Rational Design, Synthesis and Computational Structure-Activity Relationship of Novel 3-(4-Chlorophenyl)-5-(3-Hydroxy-4-Ethoxyphenyl)-4,5-Dihydro-1H-Pyrazole-1-Carboxamide

Densely functionalized 3-(4-chlorophenyl)-5-(3-hydroxy-4-etoxyphenyl)-4,5-dihydro-1H-pyrazole-1-carboxamide was  synthesized in an expedient manner through specification and transamidation  respectively, of ester-functionalized pyrazoles. This synthetic protocol allowed for three diversifying steps in which appendages on the pyrazole scaffold were adjusted to optimize inhibition of protein kina...

متن کامل

Semi-quantitative Analysis of Expression of Various Genes in relation to Possible Markers for Theileria annulata Attenuation

  The sporozoites of Theileria annulata invade bovine MHC II cells, where they differentiate into schizonts. The later can immortalize and induce fundamental changes in their host cells. Live attenuated vaccine is an important way of controlling T. annulata infection of cattle. Production is by prolonged cultivation of macroschizont-infected cells. The mechanisms underlying this transformation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemical research in toxicology

دوره 21 6  شماره 

صفحات  -

تاریخ انتشار 2008